Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(4): e0148123, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37432124

RESUMO

Streptococcus gallolyticus subsp. gallolyticus (SGG) is an opportunistic bacterial pathogen strongly associated with colorectal cancer. Here, through comparative genomics analysis, we demonstrated that the genetic locus encoding the type VIIb secretion system (T7SSb) machinery is uniquely present in SGG in two different arrangements. SGG UCN34 carrying the most prevalent T7SSb genetic arrangement was chosen as the reference strain. To identify the effectors secreted by this secretion system, we inactivated the essC gene encoding the motor of this machinery. A comparison of the proteins secreted by UCN34 wild type and its isogenic ΔessC mutant revealed six T7SSb effector proteins, including the expected WXG effector EsxA and three LXG-containing proteins. In this work, we characterized an LXG-family toxin named herein TelE promoting the loss of membrane integrity. Seven homologs of TelE harboring a conserved glycine zipper motif at the C terminus were identified in different SGG isolates. Scanning mutagenesis of this motif showed that the glycine residue at position 470 was crucial for TelE membrane destabilization activity. TelE activity was antagonized by a small protein TipE belonging to the DUF5085 family. Overall, we report herein a unique SGG T7SSb effector exhibiting a toxic activity against nonimmune bacteria. IMPORTANCE In this study, 38 clinical isolates of Streptococcus gallolyticus subsp. gallolyticus (SGG) were sequenced and a genetic locus encoding the type VIIb secretion system (T7SSb) was found conserved and absent from 16 genomes of the closely related S. gallolyticus subsp. pasteurianus (SGP). The T7SSb is a bona fide pathogenicity island. Here, we report that the model organism SGG strain UCN34 secretes six T7SSb effectors. One of the six effectors named TelE displayed a strong toxicity when overexpressed in Escherichia coli. Our results indicate that TelE is probably a pore-forming toxin whose activity can be antagonized by a specific immunity protein named TipE. Overall, we report a unique toxin-immunity protein pair and our data expand the range of effectors secreted through T7SSb.


Assuntos
Motivos de Aminoácidos , Streptococcus gallolyticus subspecies gallolyticus , Sistemas de Secreção Tipo VII , Streptococcus gallolyticus subspecies gallolyticus/genética , Glicina
2.
Sci Rep ; 13(1): 6291, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072463

RESUMO

Streptococcus gallolyticus subspecies gallolyticus (Sgg) is known to be strongly associated with colorectal cancer (CRC). Recent functional studies further demonstrated that Sgg actively stimulates CRC cell proliferation and promotes the development of colon tumors. However, the Sgg factors important for the pro-proliferative and pro-tumor activities of Sgg remain unclear. Here, we identified a chromosomal locus in Sgg strain TX20005. Deletion of this locus significantly reduced Sgg adherence to CRC cells and abrogated the ability of Sgg to stimulate CRC cell proliferation. Thus, we designate this locus as the Sgg pathogenicity-associated region (SPAR). More importantly, we found that SPAR is important for Sgg pathogenicity in vivo. In a gut colonization model, mice exposed to the SPAR deletion mutant showed significantly reduced Sgg load in the colonic tissues and fecal materials, suggesting that SPAR contributes to the colonization capacity of Sgg. In a mouse model of CRC, deletion of SPAR abolished the ability of Sgg to promote the development of colon tumors growth. Taken together, these results highlight SPAR as a critical pathogenicity determinant of Sgg.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Infecções Estreptocócicas , Streptococcus gallolyticus subspecies gallolyticus , Animais , Camundongos , Streptococcus gallolyticus subspecies gallolyticus/genética , Virulência/genética , Neoplasias Colorretais/patologia , Neoplasias do Colo/complicações , Infecções Estreptocócicas/complicações
3.
Anal Bioanal Chem ; 411(26): 6877-6887, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31388715

RESUMO

The increasing threat of Streptococcus gallolyticus subsp. gallolyticus (SGG) infections has gained considerable attention for its strong association with colorectal cancer (CRC). Herein, we proposed real-time fluorescence loop-mediated isothermal amplification (LAMP) as a novel, simple, rapid, and highly sensitive assay for identifying SGG for the first time. This assay was capable of detecting SGG with initial DNA concentrations ranging from 102 to 108 copies per microliter, under isothermal conditions within 30 min via real-time fluorescence monitoring. Our method was tested for specific identification of SGG strains without cross-reaction with other Streptococcus gallolyticus subspecies and Escherichia coli. The developed LAMP shows a superior performance with shorter time and higher sensitivity compared with conventional polymerase chain reaction (PCR). Significantly, this proposed approach was successfully applied for detecting SGG in clinical urine samples, which is non-invasive diagnosis, showing excellent accuracy and reliability to discriminate healthy controls and CRC patients. For comparison, these samples were also tested against PCR assay. These results yielded an analytical sensitivity of 100% and a specificity of 100% for SGG testing using LAMP. The findings suggest LAMP can be employed for detecting SGG infections which is useful for diagnosis and screening of CRC.


Assuntos
Neoplasias Colorretais/microbiologia , DNA Bacteriano/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Streptococcus gallolyticus subspecies gallolyticus/genética , Adulto , Idoso , Neoplasias Colorretais/urina , DNA Bacteriano/isolamento & purificação , Feminino , Fluorescência , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Amplificação de Ácido Nucleico/economia , Streptococcus gallolyticus subspecies gallolyticus/isolamento & purificação , Fatores de Tempo
5.
J Bacteriol ; 200(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29440256

RESUMO

Streptococcus gallolyticus subsp. gallolyticus, a member of the group D streptococci, is normally found in the bovine rumen and human gut. It is an opportunistic pathogen that was recently determined to be a bacterial driver of colorectal cancer, in addition to causing other diseases, such as infective endocarditis, bacteremia, neonatal meningitis, and septicemia. As an emerging pathogen, not much is known about this bacterium, its virulence mechanisms, or its virulence regulatory pathways. Previous studies suggest that S. gallolyticus subsp. gallolyticus uses a ComRS pathway, one of many Streptococcus quorum-sensing circuitries, for competence. However, thus far, the ubiquitous ComABCDE pathway has not been studied, nor has its regulatory role in S. gallolyticus subsp. gallolyticus We therefore sought to study the S. gallolyticus subsp. gallolyticus ComABCDE quorum-sensing pathway and have identified its peptide pheromone, which is termed the competence-stimulating peptide (CSP). We further determined that this peptide regulates the production of bacteriocin-like inhibitory substances (BLISs), a phenotype that has been linked with the ComABCDE pathway in both Streptococcus pneumoniae and Streptococcus mutans Our data show that S. gallolyticus subsp. gallolyticus TX20005 produces a 21-mer CSP signal, which differs from CSP signals of other Streptococcus species in that its active form begins three residues after the double-glycine leader signal of the ComC precursor peptide. Additionally, our data suggest that this peptide might not be related to competence induction, as opposed to CSP signaling peptides in other Streptococcus species. This study provides the first evidence that S. gallolyticus subsp. gallolyticus utilizes quorum sensing to eliminate competitors, presenting a potential pathway to target this emerging human pathogen.IMPORTANCEStreptococcus gallolyticus subsp. gallolyticus is an emerging human pathogen known as a causative agent of infective endocarditis, and recently, of colorectal cancer. In this work, we revealed a functional quorum-sensing circuitry in S. gallolyticus subsp. gallolyticus, including the identification of the central signaling peptide pheromone, competence-stimulating peptide (CSP), and the regulatory role of this circuitry in the production of bacteriocin-like inhibitory substances (BLISs). This work uncovered a mechanism by which this bacterium outcompetes other bacterial species and thus provides a potential tool to study this opportunistic pathogen.


Assuntos
Proteínas de Bactérias/metabolismo , Streptococcus gallolyticus subspecies gallolyticus/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Bacteriocinas/genética , Bacteriocinas/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Alinhamento de Sequência , Streptococcus gallolyticus subspecies gallolyticus/genética , Transformação Genética
6.
PLoS One ; 13(1): e0191705, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29373594

RESUMO

Streptococcus gallolyticus subsp. gallolyticus is a commensal bacterium of the human gastrointestinal tract, and a pathogen causing infective endocarditis and other biofilm-associated infections via exposed collagen. This study focuses on the characterization of the biofilm formation and collagen adhesion of S. gallolyticus subsp. gallolyticus under different conditions. In this study, it has been observed that the isolate UCN 34 is resistant to 20 mg/ml lysozyme in BHI medium, whereas the strain BAA-2069 builds more biofilm in the presence of lysozyme compared to in a control of BHI without lysozyme. A transcriptome analysis with whole genome microarrays of these two isolates in BHI medium with lysozyme compared to control without lysozyme revealed changes in gene expression levels. In the isolate BAA-2069, 67 genes showed increased expression in the presence of lysozyme, while in the isolate UCN 34, 165 genes showed increased expression and 30 genes showed decreased expression through lysozyme treatment. Products of genes which were higher expressed are in involved in transcription and translation, in cell-wall modification, in hydrogen peroxide resistance and in bacterial immunity. Furthermore, the adhesion ability of different strains of S. gallolyticus subsp. gallolyticus to collagen type I and IV was analyzed. Thereby, we compared the adhesion of 46 human isolates with 23 isolates from animals. It was shown that the adhesion ability depends significantly on whether the isolate was isolated from human or animal. For example, high adhesion ability was observed for strain UCN 34 isolated from an infective endocarditis patient, whereas strain DSM 16831 isolated from koala feces adhered only marginally to collagen. Full genome microarray analysis of these two strains revealed strain-dependent gene expression due to adhesion. The expression of 25 genes of a transposon and 15 genes of a phage region in strain DSM 16831 were increased, which corresponds to horizontal gene transfer. Adherence to collagen in strain UCN 34 led to higher expression of 27 genes and lower expression of 31 genes. This was suggestive of a change in nutrient uptake.


Assuntos
Biofilmes , Muramidase/metabolismo , Streptococcus gallolyticus subspecies gallolyticus/metabolismo , Transcriptoma , Streptococcus gallolyticus subspecies gallolyticus/genética
7.
Virulence ; 9(1): 248-261, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29072555

RESUMO

Streptococcus gallolyticus subsp. gallolyticus, formerly classified as S. bovis biotype I, is an increasing cause of bacteremia and infective endocarditis in the elderly. The physiopathology of infective endocarditis is poorly understood and involves immune and coagulation systems. In this study, we found that S. gallolyticus subsp. gallolyticus activates the human contact system, which in turn has two consequences: cleavage of high-molecular-weight kininogen (HK) resulting in release of the potent pro-inflammatory peptide bradykinin, and initiation of the intrinsic pathway of coagulation. S. gallolyticus subsp. gallolyticus was found to bind and activate factors of the human contact system at its surface, leading to a significant prolongation of the intrinsic coagulation time and to the release of bradykinin. High-affinity binding of factor XII to the bacterial Pil1 collagen binding protein was demonstrated with a KD of 13 nM. Of note, Pil1 expression was exclusively found in S. gallolyticus subsp. gallolyticus, further supporting an essential contribution of this pilus in virulence.


Assuntos
Fatores de Coagulação Sanguínea/metabolismo , Coagulação Sanguínea , Fímbrias Bacterianas/metabolismo , Infecções Estreptocócicas/metabolismo , Streptococcus gallolyticus subspecies gallolyticus/patogenicidade , Fatores de Virulência/metabolismo , Proteínas de Bactérias/metabolismo , Fator XII/metabolismo , Fímbrias Bacterianas/genética , Cininogênio de Alto Peso Molecular/metabolismo , Pré-Calicreína/metabolismo , Ligação Proteica , Streptococcus gallolyticus subspecies gallolyticus/genética , Streptococcus gallolyticus subspecies gallolyticus/crescimento & desenvolvimento , Virulência , Fatores de Virulência/genética
8.
PLoS One ; 12(5): e0176515, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28459818

RESUMO

Streptococcus gallolyticus subsp. gallolyticus was identified in humans and animals as commensal of the gut and can act as a causative agent of endocarditis and septicemia. A case-control study was performed to identify yet unknown risk factors for the transmission of this facultative pathogen. The prevalence in the gut of 99 healthy volunteers was determined using real-time polymerase chain reaction resulting in 62.5% S. gallolyticus subsp. gallolyticus positive excrements. Subsequent cultivation offered three isolates and epidemiological analysis based on MLST revealed sequence type (ST) 3 and ST 7, previously detected from bovine and endocarditis patients. These results support the hypotheses of the zoonotic potential of this bacterium. Participant questionnaires were evaluated concerning personal characteristics, nutritional habits and animal contact. Specifically, closer contact between participants and animals influenced the colonization of the human gut significantly and was further affected if volunteers used excrement for the fertilization of plants.


Assuntos
Fezes/microbiologia , Microbioma Gastrointestinal , Streptococcus gallolyticus subspecies gallolyticus/isolamento & purificação , Adulto , Idoso , Idoso de 80 Anos ou mais , Técnicas de Tipagem Bacteriana , Estudos de Casos e Controles , Feminino , Seguimentos , Microbioma Gastrointestinal/genética , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Tipagem de Sequências Multilocus , Reação em Cadeia da Polimerase em Tempo Real , Estudos Retrospectivos , Fatores de Risco , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/transmissão , Streptococcus gallolyticus subspecies gallolyticus/genética , Streptococcus gallolyticus subspecies gallolyticus/crescimento & desenvolvimento , Inquéritos e Questionários , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...